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ABSTRACT 

It is shown that ,  for a certain subclass of istropic convex sets in R n , the 

mass concentrates in a spherical shell, asymptotically for large n. This 

in tu rn  shows tha t  the inequality (/)2 
1 < Ixi2dx -~ 

K ~K 

is close to an equality for the mentioned class of isotropic convex sets, 

asymptotically for large n. It  also implies a 'central limit property '  for 

this class. 

I n t r o d u c t i o n  

By a n o r m e d  c o n v e x  b o d y  K ia R" we will understand a convex compact set 

of volume 1 whose center of inertia is at 0. The normed convex body is i s o t r o p i c  

if its ellipsoid of inertia is a Euclidean ball. The set of all isotropic normed convex 

bodies in R n will be denoted by )~n. 

For K E ~n,  u E Sn-1 (unit sphere in R ~) we define 

qOK,~(t):=A~-I({xEK;x.u=t}) ( t E R ) .  
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In [5] it was shown that for several examples ~i(,~ is close to a Gaussian density 

for large n and certain directions u. As one of the few general results we noted 

that,  for 
i )  

:=/_ 
J s  n - - 1  

(tt,~-i the normed surface measure on Sn-1), one obtains 

 K(0) 
(0.1) liminf inf - -  > 1, 

Ke . gL (0) -- 

where gL2g is the Gaussian density corresponding to K (cf. [5; Prop. 1.3]). The 

source for this result is the inequality 

(0.2) l < /K ,X,2dX (/K ~x~dx) 2 

(HSlder's inequality). It is one of the aims of this note to show that,  for a 

certain subclass of tgn, the inequality (0.2) is close to an equality, for large n. 

This implies that  for this subclass the converse inequality in (0.1) (formulated 

suitably) is valid. 

For K E t:~ we denote by LK the radius of the ball of inertia of K,  

L2K := fK(X" U) 2dx, 

independently of u E S~-I  (following the notation of [6]). The source of the 

result formulated above is the observation that, for the subclass of/C,~ mentioned 

above, the mass of K is concentrated in a neighbourhood of a sphere with radius 

v'~LK, for n --+ c~. 

The method to obtain these results is to prove certain estimates ((1.2) and 

(1.3) in Section 1) for the second and fourth moments of the sets in our class. 

The class satisfying these estimates contains the normed Euclidean balls, cubes, 

cross polytopes, and regular simplices. 

It seems worthwhile mentioning a connection between the phenomenon 

described here and the well-studied concentration of measure property; cf. [7], 

[8]. It is known that  one has an 'inverse HSlder inequality' 

(/K'x'4dx) �88 < C(/K'X]2dx) �89 

with some constant c independent of K �9 E,~ and n �9 N; cf. [6; Sec. 1.4], [3], 

[1]. We show for our subclass that c can be chosen close to 1 for large n. 
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In Section 1 we show that a suitable estimate on the fourth moment gives 

control of the concentration of mass described above, and we establish the con- 

nection to the asymptotic equality in (0.2). Moreover, we recall and explain that 

our results imply certain 'central limit properties'. 

In the remaining sections we show that the class satisfying (1.2), (1.3) has 

certain saturation properties. In Section 2 we show that forming cones does not 

lead out of the class. In Sections 3 and 4 it is shown that the class is also stable 

under forming cartesian products and 'joins', respectively. 

In Section 6 we indicate some explicit expressions for cubes and cross polytopes. 

We note that  a large part of the paper is purely calculational. We have tried 

to always indicate major steps, so the reader should have sufficiently many hints 

to carry out the additional computations. 
The author acknowledges useful conversations with U. Brehm and H. Vogt on 

the topics of this paper. In particular, U. Brehm initiated and contributed some 

of the computations of Sections 3 and 4. 

1. P r e l i m i n a r i e s  

In this section we show how the asymptotic equality in (0.2) follows from a 

concentration of mass phenomenon, and how this latter property can be derived 

from estimates of moments. 

1.1 PROPOSITION: Let T C U,~N IC,~, and assume 

(i) suPKe- r LK < co, 

(ii) supgetC,n w A,~ ({x e K; I[xl 2 - nL2[ k ~nL2}) --+ 0 (n --+ 00), for all 

e > O .  

Then 

KE1CnNT J K 

1.2 Remarks: (a) In [6; Sec. 5], the validity of assumption (i) for 7" = U,~es K:n 

is stated as 'probably a generally accepted hypothesis', and several equivalent 

formulations are discussed. 

(b) U. Brehm [4] communicated that, under the assumptions of Proposition 1.1, 

one can show that  the averaged ~o K (of. [5; Sec. 1]) is close to the corresponding 

Gaussian density, for K E 7" and large n. 
(c) Combining the hypotheses of Proposition 1.1 with a result of von 

Weizs/~cker [9] one obtains the following conclusion. 

Let n be a metric which induces convergence in law on the set of probability 

measures on ~, and assume that  T has the properties assumed in Proposition 1.1. 
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Let ~ > 0. Then 

sup #n_l({U E Sn-1; g(~OK,uAI,gL~A1) > C}) > 0 (n --~ oo), 
KEIC, ,nT 

where A1 is the 1-dimensional Lebesgue measure on iR, and 

] e _ t 2 / 2 o -  2 g~(t)  = ~ 

This statement follows from [9; Corollary 1]; note that condition (ii) of Propo- 

sition 1.1 implies that  'fAf(Ixl2/n)P'(dx) ' (el. [9]) = fg glzl2/"dx)h is close to 

gL~ A1 for large n. 
The statement given above is a 'central limit property' of the set T; cf. [5; 

Definition 1.1]. 

On the one hand, this statement is stronger than the fact stated in (b) since it 

gives a conclusion for the individual marginal measures; on the other hand, the 

approximation of the measures is obtained only in a weaker sense. 

Before starting the proof of Proposition 1.1 we recall Stirling's formula: For 

x > 0 one has 
X x 

where 0 < 0(x) _< 1. We refer to [5; end of Sec. 1] for precise references. 

Proof of Proposition 1.1: Let 0 < e < 1. Choose 0 < c < 1/2v~-~. Then 

K K N K 
[ z [ < c v ' ~  c . / ~ < _ l z l < ~ L  K ~ L K < _ I z  [ 

The first term is estimated from above by 

v / - n / ~ x ~  d x = n n  - 1 F (n/2rn/21)en-lnn/2-4- 
n 7r n/2 

< c n - l n n / 2  

- n - 1  (~)~ 24~- ~ 

n ( 2 , / ~ ) n  1 
- - c ~ 0 .  

n -  1 Cv/~n 

The second term is estimated by 

1 f Vfncv ~ dX<-cKc~c,nTsup A,~((xeg; Ilxl2-nL~l>_~nL~}) >0. 
K 
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The third term is estimated by 

1 1 

- E)nLK ff l  -- ELK" 

As a consequence we obtain 

l f K  ( / K I  ) 2 1 limsup sup - Ixl2dx V~ dx < - - .  

(Note that it is at this point that we use assumption (i); observe f g  Ixl 2dx = 
nL2.) Since this holds for all 0 <: c < 1 one obtains the assertion. I 

In order to derive assumption (ii) of Proposition 1.1 from estimates on mo- 

ments, we use Chebychev's inequality. For isotropic convex bodies K in R '~ (not 

necessarily normed to volume 1) we define 

Mo,,~(g) := A,~(K), 

M2,~(K) := / 1 12dx, 
K 

M4,n(K) := [ 

K 

Then, for K E/C,~, one has 

An ({x E K; ]lxl 2 - n L 2 1  >__ cnL2g}) 

< g2n2L4 Ilxl 2 nL2g dx 

_ g2n2L4KI (f_. -enn fK, l:d  n L%) (1.1) [.1~ IxI4dx + 

1 
- E2n2L4 g (Ma,n(g) - n2L4K) 

_ 1 f M4,,~(K) 1~ 
~2 \ M2,~(K)2 ,] 

If K is isotropic convex, not necessarily normed to volume one, then 

M4,.~(K)/M2,.(K) 2 has to be replaced by 

. _ M 4 , . .  M o , .  

Mon+4/n M, 2 M~, n ' 

where the beginning of the estimate (1.1) refers to the associated normed isotropic 

convex body. 
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We are going to consider the class 7" satisfying the inequalities 

n n! 2/n 
(1.2) M2,~ (g )  _< 

( n +  1 ) (n+2)  ( n +  1):/'~' 

Mn,n(g) < (n + 1)(n + 2) /' 2 6 "~ (1.3) 
M2,n(K) 2 - (n + 3)(n + 4) ~,1 + -n + ~ )  " 

It will turn out that in both of these inequalities, one has equality for the n- 

dimensional normed regular simplex An. 
Let us note immediately that (1.2) implies (i) of Proposition 1.1, by Stirling's 

formula: 

L2 g -_ 1M2,n(K ) < nl 2/n (n) 2 (2rn) 1/n 1 
n - (n + 1)l+l/n(n + 2) "~ (n + 1)l+l/n(n + 2) ~ e 2" 

Further, estimate (1.3) together with (1.1) implies that assumption (ii) of 

Proposition 1.1 is satisfied. 

More precisely, we define 

(1.4) 7- := U Tn, 
nCN 

with 

(1.5) T~ :-- {K E/Ca; K satisfies (1.2), (1.3)} (n �9 N), 

and we show that 7- contains certain types of sets and is saturated with respect 

to certain operations. 
To begin with we mention that T contains all (normed) Euclidean balls. In 

fact, for a ball of radius 1, one has (with the volume 

7rn/2 
r,~ - -  F ( n / 2  + 1) 

of the unit ball in R n and the (n - 1)-dimensional volume 

27rn/2 
an-1 = nTn -- F (n/2) 

of S~-l)  
Crn-- 1 

Mo,n='rn - 
n 

f fo lrn+ldx-  Crn-1 M2,,~ = Ixl2dx = O'n--1 n + 2' 

M4,n = f [xl4dx - O'n--1 
n + 4 "  
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Thus, 
M4,nMo,n (n -t- 2) 2 

M22,~ ( n + 4 ) n  

satisfies (1.3) (by a simple comparison). Moreover, (1.2) holds as soon as one 

knows that  the right hand side of (1.2) is M2,~ for the simplex (see below), since 

clearly M2,~ is smallest for the ball in ~ .  

Note also that  for n ~- 1, i.e., g -- [-�89 1], one has equality in (1.2) and (1.3). 

We summarize the results of the subsequent sections as well as the preceding 

discussion in the following statement. 

1.3 THEOREM: The set 7- defined in (1.4), (1.5) is saturated with respect to form- 

ing cones, cartesian products and joins, and 7- contains the normed Euclidean 
balls, cubes, cross polytopes and regular simplices. 

The set 7- satisfies the hypotheses of Proposition 1.1, and therefore 7- has the 

'central limit property' formulated in Remark 1.2 (c). 

1.2 Remark: In [2] - -  this preprint came to the author's knowledge only after 

submitting the present paper - -  a central limit property is proved for a subset 

of UneN ~n. The key point of this paper is a 'concentration hypothesis' corre- 

sponding to our property (ii) in Proposition 1.1. Using (1.3) together with (1.1) 

it is elementary to show 

(1.6) s  ~X--~n2-L2Kt> } )  < 4L4K 
_ r _ nr------ 7 

for all r > 0, n E N, K E 7-M ]C~. This inequality - -  with the constant 35 

instead of 4 - -  is proved in [2; Theorem 5] for l~ balls. Inequality (1.6) implies 

the 'concentration hypothesis' and therefore the central limit property of [2]. The 

main differences to the statement in Remark 1.2 (c) are: 1. The treatment in [2] 

is restricted to symmetric bodies. 2. The closeness of the marginal densities to 

the Gaussian density is expressed in terms of the distribution of the measures. 

3. The results of [2] are quantitative, including asymptotic estimates. 

2. C o n e s  ove r  isotropic convex  bodies; the  r e g u l a r  s im p lex  

Let K c_ R '~-1 be convex, isotropic. We denote by Kh the cone over K with 

height h whose center of gravity is at 0. This means that  its basis is the set 

{ 1 h} x E R n ; ( X l " " ' X n - 1 )  c K ' x n - -  n+---1 ' 
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[ 
point  . . , 0 ,  '~ h and its apex  is the /0 , .  h-4X / .  The  weight function de termining  the  

k ] 
size of Kh at  x,~ = t is then  

h t -  - n + l  

One obta ins  

(2.1) Mo,n(Kh) = h Mo,n-l(K). 

In  order  to  ob ta in  M2,,~(Kh) we calculate  

1 [/ 
-1/n 

1 
( n '~ n+2 h3 

Kh --1/n 

s2(1 - s)kds . . . .  

t 

h" 

s 2 (1 - 8)n-ldsMo,n _ 1 (K) 

( _ n _ ~ )  k+l ( 2 2 

= ( k +  1)(k + 2)(k + 3) - n(k+ 2 ) ( k + 3 )  1)] 
for k = n - 1: . . . . .  n2(n + 2 

( n ,~n+2 ( n + l )  '~ ~. ,r,-, 

= \-Cj-i) h3nC~(nu l'~ 
h 3 

= (n+ 1)2(n+2) M~ 

and 

(2.2) fKh(x~ +... xL1)ax = "  

For isotropy of Kh one needs to  have 

h 
n + 2 M2'n-I~'KI'[ "~ 

1 /K (x2 +' '"  +x2 1)dx = f g  x2dx' 
n - 1  h - h 

h2 _ (n + 1) 2 M 2 , , - I ( K )  

n -  1 Mo,n-I(K) 

which amoun t s  to 

(2.3) 

From (2.2) one obtains,  assuming Mo,n_ 1 (K)  = 1, 

(2.4) 

1 )  
+ n2(k + 3) ' 

M 2 , n ( K h ) =  n fK n 2)hM2,,~_I(K). n - ' i  (x~ + ' " +  x2-1)dx = ( n -  1 ) ( n +  
h 
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For the resulting normed convex body/~h w e  therefore obtain, taking into account 
(2.3), 

M~,~(kh)  = 
M2,~(Kh) 

Mo,n (Kh) (~+2)/~ 
n2(n+l)/n 

(n + 2)(n - 1)l-:/'~(n + 1)~/nM2'n-l(K)(n-1)/n" 

Assuming (1.2) for K (with n -  1) we thus obtain (1.2) for/4h (short compu- 
tation). Moreover, if (1.2) is satisfied with equality for K = A,~_I then (1.2) is 
satisfied with equality for An = /~h; hence induction shows equality in (1.2) for 
the n-dimensional regular simplex. 

In order to show the persistence of (1.3) we calculate 

nh/(n+l) 
M4,n(Kh) = / 'xl4dx = / / ([Y[2 + t2) 2 dydt 

Kh -h/(n+l) (n/(n+l)--t/h)K 

= / /  'y'4dydt + 2 / /  'y'2t2dydt + / /  t4dydt 

= I + I I + I I I ,  

nh/(n+l) n+3 

I =  f ( + l h )  dtM4,n-l(K) = " 
-h/(~+l) 

~h/(n+l) 

n~ 1 dt M2,~-I(K) 
-hl(n+l) 

1 

- -  2 \ ~ - ~ ]  h a / s2(1 - s)~+lds M2,n-I(K) 

h 
n + 4 ~ 4 ' n - l ~ K )  , ~ R  , ~ 

for the integral apply the formula derived above, with k = n + 1; 

1 (n+l)"+~(,~+n+6) ] 
f s2(1 - s)~+lds . . . . .  nn+4(n+2)(~+3)(n+4)j 

-Un 
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= 2 n2+n~-6 h 3 i 2 , n _  1 (K), (n+l)2(n+2)(n+3)(n+4) 

nh/(n+l) 

I I I =  t4 n + 1 

-h/(n+l) 

n+4 1 

-1/n 

1 

[/ 
-1/n 

h ) n-1 dt Mo,n_l (K) 

s4(1 -- s)n-ldsMo,n_l(K) 

S4(1 -- s)kds . . . .  

= ( - ~ ) k + l (  1 
k + l  

4 6 4 1 - - + - -  - - + - -  
k + 2  k + 3  k + 4  k + 5  

4 (  1 _ _  3 _ _  3 1 ) 
n k + 2  k + 3 + k + 4  k + 5  

6 ( 1 2 1 ) 
k73 

4 ( 1  1 ) 
n 3 k + 4  k + 5  

11) 
+ n q k +----5 

( n +  l ~ k + l (  4! 4.3! 

---- ~ , ~ - ]  \ ( k + l ) : : - ( k + 5 ) - n ( k + 2 ) . . . ( k + 5 )  

6-2! 4 1 
+ n2(k + 3) . . .  (k + 5) - n3(k + 4)(k + 5) + n4(k + 5 ) ) ;  

for k = n -  1: = .  (n + 1) n .3 .  3n 2 - n +  2 / 
"" = n ~+ -~ -g - -  (n + 2--~n--+-~)(n + 4) 

_ 3(3n 2 - n + 2) 4) h5M~ ,~-1 (K). 
- (n + 1)4(n + ~ ( - n - ~ - ) ( n  + 

Taking into account (2.3) one obtains (abbreviating Mj,~_I := Mj,~_I(K), 

Mj,,  := Mj,,~(Kh)) 

h n 2 + n + 6  M2 2,n-1 
- 4Ma,n_1 + 2h M4,n n + (n - 1)(n + 2)(n + 3)(n + 4) Uo,n-1 

3n 2 n + 2 M 2 - 2,n-1 
+ 3 h  

(n - 1)2(n + 2)(n + 3)(n + 4) Mo,n-1 

h 2n 1 M s -- 2,n--1 
= 4M4,n_1 4- n +  h (n - 1)2(n+4)  U0,n-1 
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and, using (2.1) and (2.4), 

M4,nMo,n (n - 1)2(n + 2) 2 M4,n-IMo n - 1  (n + 2)2(2n -- 1) 
(2.5) M 2 - M 2 ' + n3(n -4- 4) 2,n na(n "4- 4) 2,n--1 

Now, assuming (1.3) for K (with n - 1), a straightforward computation shows 

(1.3) for Kh, with equality if equality holds for K. The latter shows that  (1.3) 

holds with equality for the simplex An. In fact, formula (2.5) is the source for 

the expression on the right hand side of (1.3). (Thanks to H. Vogt!) 

Summarizing the previous discussion we have shown that T contains all the 

normed regular simplices An, with equalities in (1.2) and (1.3), and that  T is 

invariant under formation of cones/~h with a basis K E 7". 

3. C a r t e s i a n  p r o d u c t s  

Let Kj C ]Cnr for j = 1,2, n := nl + n2. Then 

K:-~ (~l/n'I~l) • ()~-l/n2K1) E)t~n 

for 

(3.1) 

n l n  2 
2 n  

and 

(3.2) 

nl n2 

= 1 M " .  

Assuming (1.2) for K1, K2, the desire to show (1.2) for K amounts to showing 

(nl!n2!) 2/n 
(nl + 1)(n~+l)ln(nl + 2)nlln(n2 + 1)(n2+l)ln(n2 + 2) n21n 

n! 2/n 
< 
- ( n +  1)(n+Wn(n+ 2)' 

o r  

( n l ! n 2 ! )  2 n! 2 

(3.3) (n1+ l)nl+l(n1+ 2)n,(n2 + l)n2+l(n2 + 2),~ 2 < (n + l)n+l(n + 2)n. 

This is true for nl  = 0, n2 -- n, with equality. Let 0 < nl < n2. It is suffi- 

cient to show that  the left hand side of (3.3) decreases if (nl, n2) is replaced by 
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(nx + 1, n2 - 1), i.e., 

(nl!n2!) 2 
(nl + 1)nl+l(nl + 2)nl (n2 + 1)n2+l(n2 + 2) n2 

> ( nl + 1)!2(n2 - 1)! 2 
- -  n l + l  n2 ' (nl + 2 ) n ' + 2 ( n l + 3 )  n 2 ( n 2 + l )  n2-1 

o r  
n~ 2+2 (hi + 1) n~+3 

(n2 + 1)2(n2 + 2) n2 ~ (nl + 2)2(nl + 3) nl+l" 

This means that  the assertion is reduced to showing that  

n n + 2  

(n + 1)2(n + 2)" 

This is calculated directly for n = 1,2, and it is now is increasing for n _> 1. 

sufficient to show that  
xX+2 

f ( x ) =  ( x + l ) 2 ( x + 2 )  x 

is increasing for x > 2. Now 

( d x ( l n f ( x ) ) = - l n  1 +  + x  x + l +  x + 2  

2 2 2 
4- - - + - -  

x x + l  x + 2 "  

The sum of the first three terms of the series of the logarithm and the terms 

outside the series is 
2 ( x -  2)(5x +4)  > 0 

3x3(x+ 1)(x + 2) - 

for x >_ 2. Also, the remaining part of the series is >_ 0 (alternating signs, and 

decreasing absolute values). 

In order to discuss (1.3) we calculate 

M4,n(K) = s (Ix'l 2 + 1~"12) 2 dx 

__~ (n,+4)/n, M4,m (K1)~ -1 

+ 2A ('~'+2)/'~' M2,n, (K1)A-(n2+2)/"2M2,n2 (/s 

+ ~-(~+4)/"~M4,n:(K2) 

1( )21( )31 , ) 
= + 
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(inserting (3.1), and using an obvious simplified notation) 

' \ n 2  ' / 

Using (3.2) we finally obtain 

M4,~ 1 { ~M4,~1 ~ M ~ , ~  
= l n l ~ + 2 n l n 2 - t - n 2 ~ _  | . 

Assuming (1.3) for K1, K2, the desire to show (1.3) for K then means showing 

the inequality 

g(nl) + 2nln2 + g(n2) <_ 9(n) (3.4) 

with 
k2(k + 1 ) ( k + 2 )  ( 2 6 ) g(k) (k + 3)(k + 4) . 1 + ~ + ~ - - ~  

/ 

( 5k2 + 11k 
= k 2 + 4 k  - 4 \ ( / ~ ] i~ -~ - -4 )  ] 

= k 2 + 4k - 4h(k). 

Taking into account n 2 + 2nln2 + n 2 = n 2, 4nl + 4n2 = 4n, (3.4) is transformed 

to 

(3.5) h(nl) + h(n2) > h(n). 

For nl = 0, n2 = n one has equality in (3.5). It is now sufficient to show: If 0 < 
nl < n2 and one replaces (nl, n2) in the left hand side of (3.5) by (hi + 1, n2 - 1), 

then this expression increases, i.e., 

h(nl)  + h(n2) < h(nl  + 1) + h(n2 - 1), 

or  

h(n2) - h(n2 - 1) < h(nl  + 1) - h(nl),  

which means that k ~ h(k + 1) - h(k) is decreasing for k > 0. The latter follows 

from k + 2 
h(k + 1) h(k) 24(k + 3)(k + 4)(k + 5)" 

Summarizing we have shown that T is invariant under formation of isotropie 

cartesian products of sets in ~-. In particular, T contains all cubes [-�89 1]~. 
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4. T h e  jo in  

Let Kj E ~ for j = t, 2, n := nl + n2. We form the jo in  K1 * K2 C ]~ ,  

K1 * K2 := {(tx', (1 - t)x"); x' e K1, x" e K2, 0 < t < 1}. 

Then 

(Idea: 
t ~ tK1 is multiplied by the volume of (1 - t)K2.) /1 

= nl tn l - l (1  - t)'~2dt = nlB(nt ,  n2 + 1) 

F(nl)F(n2 + 1) nl!n2[ 
= nl F(nl + n2 + 1) n! 

Next we calculate the second moments of K1 * K2: 

/K~.K IX"12dX = nl fol tn~-l A~ (K1) f(l_t)K2 lX"12 dx2 dt 

nil(n2 + 2)l ~ 
-- ( n + ~ i  ~2,,~2, 

K ix,12dx _ (nl + 2)!n2! M2,m. 
1.K2 (It + 2)! 

Isotropy requires 

,KI*c~2K2 7%1 1KI*C~2K:~ 

1 n l  n2+2nl!( n2 + 2)! 1 ~ 1  ~2 -(-~.~- ~)1. M2'"2 = --la?~+2 a~2 (nl + (n + 2)! 

(4.1) 

f0 
1 

An(K1 * K2) = (1 - t)"2A.2(K2)nltn~-lAm (K1)dt 

The differential volume nlt"l-lAnl(K1)dt of the one-parameter family 

M2,nl 

o122nl(n2 + 1)(n2 + 2)M2,n2 = a2n2(nl + 1)(nl + 2)M2,nl. 

Norming ~IK1 * ~2K2 to volume 1 yields 

n~ 
7 % 2  _ _  

(4.2) c~1(~2 nl!n2[" 

From (4.1) and (4.2) one obtains 

(4.3) 

n n[ (n l (n2  + 1)(n2 + 2)M2,~2 / ~ 
a l  nl[n2~ \n2(n l  + 1) (u l  + 2)M2,nl ] 

n n! + 1)(nl  + 2)M2,nl 2 
a2 nl!n2------~. \nl(n2 + 1)(n2 + 2)M2,~2 ] 
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Thus, for a l , a 2  > 0 such that alK1 * a2K2 E K:n one obtains 

M 2  n(Ot lK1  * a2K~.) =n~-o~nloln2+2nl!(n2 q- 2 ) ! M '  
' ?7,2 1 2 "~  '~ 2-)i 2,n2 

n ( n[ ~-~ (n,+l)(n,+2)M2,n, 
----(n + l ~ n  + 2) \ n l [n2! ]  nl 

x n2 "tv't2'n2 ) 

In order to transfer (1.2) from K1, K2 to alK1 * a2K~ one therefore has to show 

2 2 ~ 2 

n ( n '  "~ ( n,'~___ ) " ( n2,~~(n2+1)~] ~" 
(n + 1 ) (n+  2) \ n l !n2 ! ]  \ (hi + 1)~-~ ----- '  

(n + 1)(~ + 2) ((hi + 1)(n~ + 1))'In 
n n! 2/n 

< 
- ( n +  1)(n + 2) ( n +  1)'/"" 

This, however, is immediate from the inequality 

(nl + 1)(n2 + 1) -- nln~ + nl -k n2 + 1 > n + 1. 

In order to treat (1.3) we first calculate 

/0' Ix"[4dx = a'~l Mo,n~a~+4M4,n2n 1 t n ' - l (1  __ t ) n 2 + 4 d t  
I KI *a2 K2 

•n 1 i~n2_[_ 4 n 1 ! ( n  2 -~- 4)] 
= 1 

2_nl+2M. an2+2M ' (hi -I- 2)!(n2 + 2)! 2 Ix'[21x"l 2dx = ~1 2,,~1 2 2,,~ (n + 4)! ' 
1Kl*a2K2 

~ I  KI *C~2K2 [x'14 dx symmetrically. 

A short computation, using (4.2) and (4.3), yields 

M4,n 1 (n + 1)(n -F 2) 
M. 2 n 2 (n + 3)(n + 4) 2,n 

(n2(nl__J 3)(nl-[-4_) g4,n, 
X ~k (nl -b 1)(nl q- 2) M'22,,,1 + 2nln2 + 

n~(n2 + 3)(n2 + 4) M4,,~: "~ 

( n 2 + l ) ( n 2 + 2 )  ~ 2 , n 2 ] "  
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Assuming (1.3) for K1, K2 one obtains 

M4,n 1 
M~ <-~ 2~n 

(n + 1)(n + 2) 
(n + 3)(n + 4) 

x n~ 1 + - - 2  + 6 + 2 n l n 2 + n ~  1 + - - +  
Ttl ~tl n2 

(n + 3)(n + 4 ) 1 + - +  + . : n -~  \ n l  + 1 n2 + 1 ] ]  

6)) 
n 2 + l  

So, in order to conclude (1.3) for a l K 1  * a2K2 it remains to see 

n~ ~ ~2 - - +  < - -  
n l + l  n 2 + l  -- n + l '  

which, because of 

is equivalent to 

k 2 1 
- k - l + - -  

k + l  k + l '  

( n ~ _ + n l + 2  ) 1 
(nl + 1)(n2 + 1) = ~ + - -  

11__  
n 2 + l  - n + l  + 1  n + l  

This inequality holds because of (nl + 1)(n2 + 1) > n + 1. 

Summarizing we have shown that T is invariant under formation of isotropic 
normed joins of sets in T. In particular, T contains all normed cross polytopes 

Zn. 

5. Concluding remarks 

Starting from n = 1, C :-- [_1, 1] and taking successively cartesian products one 
obtains the cubes C n :-- [ -1 ,  1 ~] . One easily calculates 

n M4,n(C,~ ) _ n n (n  - 1) M 4 , , ( C  n) (C'~) 2 = 1-~ 4 
M2'"(C") = 1-2' 5 .16  } 1 4 ~ '  M 2,,~ -5-~" 

We note that  for cubes the desired property (ii) of Proposition 1.1 is a conse- 

quence of the weak law of large numbers (hint given to the author by H. Vogt), 

and the corresponding proof for this case was the origin of our estimate (1.1). 

Starting from n = 1, X1 :-- [-1,  1] and forming successively isotropic normed 

joins one obtains the normed cross polytopes Xn. One calculates 

n M4,n(X,~) ( n + l ) ( n + 2 )  ( 5 )  
M2,n(X,~) -- 2(n + 1)(n + 2) a!2/'~' M2,~(X,~) 2 (n + 3)(n + 4) 1 + . 
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Denot ing  by B,~ the  n-dimensional  Eucl idean ball of volume 1 we therefore have 

the inequalit ies 

M2,n(B,~) < M2,,~(Xn) <_ M 2 , . ( C " )  _ M 2 , . ( A . ) .  

For M4,./M2,,~, the  chain of inequalities is 

M4,,~ ~ ~ M4,n tA , 
< (C < < 

2,n -- 2,n -- 2,n -- M~,n k--nj. 
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